Sponsored Links
-->

Thursday, June 21, 2018

Brain Wave Entrainment Enhanced Savasana! â€
src: yogawithashton.com

Brainwave entrainment, also referred to as brainwave synchronization and neural entrainment, refers to the capacity of the brain to naturally synchronize its brainwave frequencies with the rhythm of periodic external stimuli, most commonly auditory, visual, or tactile.

It is hypothesized that listening to these beats of certain frequencies one can induce a desired state of consciousness that corresponds with specific neural activity. It is widely accepted that patterns of neural firing, measured in Hz, correspond with states of alertness such as focused attention, deep sleep, etc.


Video Brainwave entrainment



Neural oscillation and electroencephalography (EEG)

Neural oscillations are rhythmic or repetitive electrochemical activity in the brain and central nervous system. Such oscillations can be characterized by their frequency, amplitude and phase. Neural tissue can generate oscillatory activity driven by mechanisms within individual neurons, as well as by interactions between them. They may also adjust frequency to synchronize with the periodic vibration of external acoustic or visual stimuli.

The activity of neurons generate electric currents; and the synchronous action of neural ensembles in the cerebral cortex, comprising large numbers of neurons, produce macroscopic oscillations. These phenomena can be monitored and graphically documented by an electroencephalogram (EEG). The electroencephalographic representations of those oscillations are typically denoted by the term 'brainwaves' in common parlance.

The technique of recording neural electrical activity within the brain from electrochemical readings taken from the scalp originated with the experiments of Richard Caton in 1875, whose findings were developed into electroencephalography (EEG) by Hans Berger in the late 1920s.


Maps Brainwave entrainment



Neural oscillation and cognitive functions

The functional role of neural oscillations is still not fully understood; however they have been shown to correlate with emotional responses, motor control, and a number of cognitive functions including information transfer, perception, and memory. Specifically, neural oscillations, in particular theta activity, are extensively linked to memory function, and coupling between theta and gamma activity is considered to be vital for memory functions, including episodic memory.


Neuroplasticity: Brainwave Entrainment â€
src: steemitimages.com


Awareness and consciousness

Electroencephalography (EEG) has been most widely used in the study of neural activity generated by large groups of neurons, known as neural ensembles, including investigations of the changes that occur in electroencephalographic profiles during cycles of sleep and wakefulness. EEG signals change dramatically during sleep and show a transition from faster frequencies to increasingly slower frequencies, indicating a relationship between the frequency of neural oscillations and cognitive states including awareness and consciousness.


Brainwave Entrainment & PEMF Therapy - YouTube
src: i.ytimg.com


Entrainment

Meaning and origin of the term 'entrainment'

Entrainment is a term originally derived from complex systems theory, and denotes the way that two or more independent, autonomous oscillators with differing rhythms or frequencies, when situated in a context and at a proximity where they can interact for long enough, influence each other mutually, to a degree dependent on coupling force, such that they adjust until both oscillate with the same frequency. Examples include the mechanical entrainment or cyclic synchronization of two electric clothes dryers placed in close proximity, and the biological entrainment evident in the synchronized illumination of fireflies.

Entrainment is a concept first identified by the Dutch physicist Christiaan Huygens in 1665 who discovered the phenomenon during an experiment with pendulum clocks: He set them each in motion and found that when he returned the next day, the sway of their pendulums had all synchronized.

Such entrainment occurs because small amounts of energy are transferred between the two systems when they are out of phase in such a way as to produce negative feedback. As they assume a more stable phase relationship, the amount of energy gradually reduces to zero, with systems of greater frequency slowing down, and the other speeding up.

Subsequently, the term 'entrainment' has been used to describe a shared tendency of many physical and biological systems to synchronize their periodicity and rhythm through interaction. This tendency has been identified as specifically pertinent to the study of sound and music generally, and acoustic rhythms specifically. The most ubiquitous and familiar examples of neuromotor entrainment to acoustic stimuli is observable in spontaneous foot or finger tapping to the rhythmic beat of a song.

Exogenous entrainment

Exogenous rhythmic entrainment, which occurs outside the body, has been identified and documented for a variety of human activities, which include the way people adjust the rhythm of their speech patterns to those of the subject with whom they communicate, and the rhythmic unison of an audience clapping.

Even among groups of strangers, the rate of breathing, locomotive and subtle expressive motor movements, and rhythmic speech patterns have been observed to synchronize and entrain, in response to an auditory stimuli, such as a piece of music with a consistent rhythm. Furthermore, motor synchronization to repetitive tactile stimuli occurs in animals, including cats and monkeys as well as humans, with accompanying shifts in electroencephalogram (EEG) readings.

Endogenous entrainment

Examples of endogenous entrainment, which occurs within the body, include the synchronizing of human circadian sleep-wake cycles to the 24-hour cycle of light and dark. and the synchronization of a heartbeat to a cardiac pacemaker.

Brainwave entrainment

Brainwaves, or neural oscillations, share the fundamental constituents with acoustic and optical waves, including frequency, amplitude and periodicity. Consequently, Huygens' discovery precipitated inquiry into whether or not the synchronous electrical activity of cortical neural ensembles might not only alter in response to external acoustic or optical stimuli but also entrain or synchronize their frequency to that of a specific stimulus.

Brainwave entrainment is a colloquialism for such 'neural entrainment', which is a term used to denote the way in which the aggregate frequency of oscillations produced by the synchronous electrical activity in ensembles of cortical neurons can adjust to synchronize with the periodic vibration of an external stimuli, such as a sustained acoustic frequency perceived as pitch, a regularly repeating pattern of intermittent sounds, perceived as rhythm, or of a regularly rhythmically intermittent flashing light.


Brainwave Entrainment | Quantum Mind Success
src: quantummindsuccess.com


Music and the frequency following response

Changes in neural oscillations, demonstrable through electroencephalogram (EEG) measurements, are precipitated by listening to music, which can modulate autonomic arousal ergotropically and trophotropically, increasing and decreasing arousal respectively. Musical auditory stimulation has also been demonstrated to improve immune function, facilitate relaxation, improve mood, and contribute to the alleviation of stress. These findings have contributed to the development of neurologic music therapy, which uses music and song as an active and receptive intervention, to contribute to the treatment and management of disorders characterized by impairment to parts of the brain and central nervous system, including stroke, traumatic brain injury, Parkinson's disease, Huntington's disease, cerebral palsy, Alzheimer's disease, and autism.

Meanwhile, the therapeutic benefits of listening to sound and music is a well-established principle upon which the practice of receptive music therapy is founded. The term 'receptive music therapy' denotes a process by which patients or participants listen to music with specific intent to therapeutically benefit; and is a term used by therapists to distinguish it from 'active music therapy' by which patients or participants engage in producing vocal or instrumental music. Receptive music therapy is an effective adjunctive intervention suitable for treating a range of physical and mental conditions.

The Frequency following response (FFR), also referred to as Frequency Following Potential (FFP), is a specific response to hearing sound and music, by which neural oscillations adjust their frequency to match the rhythm of auditory stimuli. The use of sound with intent to influence cortical brainwave frequency is called auditory driving, by which frequency of neural oscillation is 'driven' to entrain with that of the rhythm of a sound source.


Deep Relaxation + Emotional Balance Brainwave Entrainment ...
src: i.ytimg.com


See also

  • Beat (acoustics)
  • Electroencephalography
  • Neural oscillation

Neuroplasticity: Brainwave Entrainment â€
src: steemitimages.com


References


SUN GAZING Meditation
src: i.ytimg.com


Further reading

  • Will U, Berg E (31 August 2007). "Brain wave synchronization and entrainment to periodic acoustic stimuli". Neuroscience Letters. 424: 55-60. doi:10.1016/j.neulet.2007.07.036. Retrieved April 5, 2017. 
  • Kitajo, K.; Hanakawa, T.; Ilmoniemi, R.J.; Miniussi, C. (2015). Manipulative approaches to human brain dynamics:. Frontiers Research Topics. Frontiers Media SA. p. 165. ISBN 978-2-88919-479-7. 
  • Thaut, M. H., Rhythm, Music, and the Brain: Scientific Foundations and Clinical Applications (Studies on New Music Research). New York, NY: Routledge, 2005.
  • Berger, J. and Turow, G. (Eds.), Music, Science, and the Rhythmic Brain : Cultural and Clinical Implications. New York, NY: Routledge, 2011.

deep delta restorative sleep - brainwave entrainment meditation ...
src: i.ytimg.com


External links

  • This is your brain on communication | Uri Hasson (TEDtalk)

Source of article : Wikipedia